Author Message
jolkaP

Joined: 17 Oct 2011
Posts: 12
Location: Marseille (France)

Posted: Thu Jan 12, 2012 11:57 pm    Post subject: Surfaces from Alfred Grays "Modern Differential Geometr

Hello everybody,

There is a book called "Modern Differential Geometry of Curves and Surfaces with Mathematica" that has a lot of beautiful formulae inside. And the author put them on line, at first in his own website, now they are available on Wolfram (Mathematica's editor). The direct link to the file is http://library.wolfram.com/infocenter/Books/3759/Gray.zip?file_id=4520. Of course, they are in Mathematica syntaxe.

Here I share the isosurfaces from this source with the k3dsurf syntaxe. The morph parameter t in Scherk surfaces was added by myself.

 Code: Name: cossurface /*(z - a*x*y)^2 - a^2(1 - x^2)(1 - y^2)=0 is the  nonparametric form of the surface (u,v)->(a*cos(u),a*cos(v),a*cos(u + v)).*/ F(): (z - x*y) ^2-(1 - x^2)*(1 - y^2) [x]: -1 , 1 [y]: -1 , 1 [z]: -1 , 1 ; Name: crosscap(1,1) /*(a*x^2 + b*y^2)(x^2 + y^2 +  z^2) - 2*z*(x^2 + y^2) =0 is the nonparametric form of a crosscap*/ F(): (x^2+y^2)*(x^2+y^2+z^2)-2*z*(x^2+y^2) [x]: -1 , 1 [y]: -1 , 1 [z]: -2 , 2 ; Name: ellipsoid(1,2,3) /*(x/a)^2 + (y/b)^2 + (z/c)^2 - 1=0 is the nonparametric form of an ellipsoid.*/ F(): (x/1)^2 + (y/2)^2 + (z/3)^2 - 1 [x]: -1 , 1 [y]: -2 , 2 [z]: -3 , 3 ; Name: ellipticparaboloid(1,2,3) /*(x/a)^2 + (y/b)^2 - c*z=0 is the nonparametric form of an elliptic paraboloid.*/ F(): x^2 + (y/2)^2 - 3*z [x]: -6 , 6 [y]: -12 , 12 [z]: 0 , 12 ; Name: equihom1 /*xyz-1=0 is the nonparametric form of the first equiaffinely homogeneous surface.*/ F(): x*y*z-1 [x]: -3 , 3 [y]: -3 , 3 [z]: -3 , 3 ; Name: equihom2 /*This is the nonparametric form of the second equiaffinely homogeneous surface.*/ F(): (x^2 + y^2)*z - 1 [x]: -3 , 3 [y]: -3 , 3 [z]: -3 , 3 ; Name: equihom3 /*This is the nonparametric form of the third equiaffinely homogeneous surface.*/ F(): x^2*(z - y^2)^3 - 1 [x]: -3 , 3 [y]: -2 , 2 [z]: 0 , 4 ; Name: equihom4 /*This is the nonparametric form of the fourth equiaffinely homogeneous surface.*/ F(): x^2*(z - y^2)^3 + 1 [x]: -3 , 3 [y]: -3 , 3 [z]: -5 , 3 ; Name: equihom5 /*This is the nonparametric form of the fifth equiaffinely homogeneous surface.*/ F(): z - x*y - x^3/3 [x]: -3 , 3 [y]: -3 , 3 [z]: -3 , 3 ; Name: equihom6 /*This is the nonparametric form of the sixth equiaffinely homogeneous surface.*/ F(): z - x*y + log(x) [x]: 0.00001 , 5 [y]: -5 , 5 [z]: -5 , 5 ; Name: goursat(0.5,0.8,-1) /* x^4 + y^4 + z^4 +a*(x^2 + y^2 + z^2)^2 + b*(x^2 + y^2 + z^2) + c=0.  is the nonparametric form of Goursat's surface*/ F(): x^4 + y^4 + z^4 +0.5*(x^2 + y^2 + z^2)^2 + 0.8*(x^2 + y^2 + z^2) -1 [x]: -1 , 1 [y]: -1 , 1 [z]: -1 , 1 ; Name: hyperbolicparaboloid(1,2,3) /*(x/a)^2 - (y/b)^2 - c*z=0 is the nonparametric form of a hyperbolic paraboloid.*/ F(): x^ 2-(y/2)^2-3*z [x]: -3 , 3 [y]: -6 , 6 [z]: -3 , 3 ; Name: hyperboloid(1,2,3) /*(x/a)^2 + (y/b)^2 - (z/c)^2 - 1=0 is the nonparametric form of a hyperboloid.*/ F(): x^ 2+(y/2)^2-(z/3)^2-1 [x]: -10 , 10 [y]: -10 , 10 [z]: -5 , 5 ; Name: hy2sheet(1,1,1) /*(x/a)^2 - (y/b)^2 - (z/c)^2 - 1=0 is the nonparametric form of a hyperboloid of two sheets.*/ F(): x^2-y^2-z^2-1 [x]: -sqrt(10) , sqrt(10) [y]: -3 , 3 [z]: -3 , 3 ; Name: hy2sheet(1,2,3) /*(x/a)^2 - (y/b)^2 - (z/c)^2 - 1=0 is the nonparametric form of a hyperboloid of two sheets.*/ F(): x^2-(y/2)^2-(z/3)^2-1 [x]: -sqrt(10) , sqrt(10) [y]: -6 , 6 [z]: -9 , 9 ; Name: kazoola(1,1,1,1) /*d + c*x^2y^2z^2 - a*(x^2 + y^2 + z^2) - b*(x^4 + y^4 + z^4)=0 is the nonparametric form of a kazoola.*/ F(): 1 + x^2*y^2*z^2 - (x^2 + y^2 + z^2) - (x^4 + y^4 + z^4) [x]: -sqrt(10) , sqrt(10) [y]: -6 , 6 [z]: -9 , 9 ; Name: kummer /*x^4 + y^4 + z^4 - (y^2*z^2 + z^2*x^2 + x^2*y^2) - (x^2 + y^2 + z^2) + 1=0 is the nonparametric form of Kummer's surface..*/ F(): x^4 + y^4 + z^4 - (y^2*z^2 + z^2*x^2 + x^2*y^2) - (x^2 + y^2 + z^2) + 1 [x]: -2 , 2 [y]: -2 , 2 [z]: -2 , 2 ; Name: scherk(1+t) /*exp(a*z)*cos(a*x) - cos(a*y)==0 is the nonparametric form of Scherk's minimal surface.*/ F(): exp((1+t)*z)*cos((1+t)*x)-cos((1+t)*y) [x]: -20 , 20 [y]: -20 , 20 [z]: -4 , 4 ; Name: scherk(1,pi-t) /*exp(a/*tan(x/(a*cos(phi)))*tan(y/(a*sin(phi))) - tanh(z/a)==0 is the  nonparametric form of a twisted Scherk's minimal surface.*/ F(): tan(x/(cos(pi-t)))*tan(y/(sin(pi-t))) - tanh(z) [x]: -pi , pi [y]: -pi , pi [z]: -pi/2 , pi/2 ; Name: scherk5 /*sinh(x)*sinh(y) - sin(z)=0 is the nonparametric form of a Scherk's fifth minimal surface.*/ F(): sinh(x)*sinh(y) - sin(z) [x]: -3 , 3 [y]: -3 , 3 [z]: -5*pi/2 , 5*pi/2 ; Name: sinsurface /*4*x^2*y^2*(a^2 - z^2) - a^2*(x^2 + y^2 - z^2)^2=0 is the nonparametric form of the surface (u,v)->a*sin(u),a*sin(v),a*sin(u + v))*/ F(): 4*x^2*y^2*(1 - z^2) - (x^2 + y^2 - z^2)^2 [x]: -1 , 1 [y]: -1 , 1 [z]: -1 , 1 ; Name: sphere(1) /*x^2+y^2+z^2-a^2=0 is the nonparametric form of a sphere.*/ F(): x^2+y^2+z^2-1 [x]: -1 , 1 [y]: -1 , 1 [z]: -1 , 1 ; Name: sphere(2,1) /*x^2n+y^2n+z^2n-a^2n=0 the nonparametric form of the surface x^(2*n) + y^(2*n) +z^(2*n) = a^(2*n).*/ F(): x^4+y^4+z^4-1 [x]: -1 , 1 [y]: -1 , 1 [z]: -1 , 1 ; Name: torus(8,3) /*z^2 + (sqrt(x^2 + y^2) - a)^2 - b^2=0 the nonparametric form of a torus.*/ F(): z^2 + (sqrt(x^2 + y^2) - 8)^2 - 3^2 [x]: -11 , 11 [y]: -11 , 11 [z]: -3 , 3 ; Name: twocusps /*The nonparametric form of a surface with two cusps.*/ F(): (z - 1)^2*(x^2 - z^2) - (x^2 - z)^2 - y^4 - y^2*(2*x^2 + z^2 + 2*z - 1) [x]: -1 , 1 [y]: -1.2 , 1.2 [z]: -0.5 , 0.9 ;

I know some of them are already in the k3dsurf's default examples but there are some others that are not yet in the pre-loaded list of isosurfaces.

To use these examples just save the code in a file with k3ds extension and then load it while working in the isosurfaces environement inside k3dsurf. They will be added to the list of surfaces directly available for this session.
jolkaP

Joined: 17 Oct 2011
Posts: 12
Location: Marseille (France)

Posted: Fri Jan 13, 2012 12:34 am    Post subject: Parametric morphed surfaces

This source has also an interesting list of morphed parametric surfaces: like a catenoid becoming a plane. Here you are:
 Code: Name:richmondpolar /* richmondpolar(n)[t](u,v):=         {-cos(t + v)/(2*u) -           u^(2*n + 1)*cos(t - (2*n + 1)*v)/(4*n + 2),          -sin(t + v)/(2*u) +           u^(2*n + 1)*sin(t - (2*n + 1)*v)/(4*n + 2),           u^n*cos(t - n*v)/n} is the polar parametrization of a 1-parameter family of minimal surfaces such that {r,theta}->richmondpolar[n][0][r,theta] is a minimal surface with one planar end of degree n.*/ X():-cos(t + v)/(2*u) - u^3*cos(t - 3*v)/6 Y():-sin(t + v)/(2*u) + u^3*sin(t - 3*v)/6 Z():u*cos(t - v) [u]:0.3,1.3 [v]:0,2*pi
 Code: Name:planetocat /* {u,v}->planetocat[t](u,v) is a 1-parameter family of minimal surfaces containing a plane and a catenoid. The principal curves of each surface are planar. */ X():cos(t)*u + sin(u)*cosh(v) Y():sin(t)*cos(u)*cosh(v) Z():v + cos(t)*cos(u)*sinh(v) [u]:0,2*pi [v]:-2,2
 Code: Name:hypocycloidinvolutemin /* (u,v)->hypocycloidinvolutemin(a,b)[t](u,v)=         (cos(t)*((a - b)*cos(u)*cosh(v) +          b*cos((a - b)*u/b)*cosh((a - b)*v/b)) +          sin(t)*((-a + b)*sin(u)*sinh(v) -          b*sin((a - b)*u/b)*sinh((a - b)*v/b)),          cos(t)*((a - b)*cosh(v)*sin(u) -          b*cosh((a - b)*v/b)*sin((a - b)*u/b)) +          sin(t)*((a - b)*cos(u)*sinh(v) -          b*cos(((a - b)*u)/b)*sinh((a - b)*v/b)),          (-4*(a - b)*b*cos((a*u)/(2*b))*cosh((a*v)/(2*b))*sin(t))/a -         (4*(a - b)*b*cos(t)*sin((a*u)/(2*b))*sinh((a*v)/(2*b)))/a) is a 1-parameter family of minimal surfaces such that (u,v)->hypocycloidinvolutemin(a,b)[0](u,v) is a minimal surface containing the involute of a hypocycloid as a geodesic. */ X():cos(t)*(3*cos(u)*cosh(v) + cos(3*u)*cosh(3*v)) + sin(t)*(-3*sin(u)*sinh(v) - sin(3*u)*sinh(3*v)) Y():cos(t)*(3*cosh(v)*sin(u) - cosh(3*v)*sin(3*u)) + sin(t)*(3*cos(u)*sinh(v) - cos((3*u))*sinh(3*v)) Z():-3*cos(2*u)*cosh(2*v)*sin(t) - 3*cos(t)*sin(2*u)*sinh(2*v) [u]:-pi,pi [v]:-1,1
 Code: Name:heltocat /* (u,v)->heltocat[t](u,v)=(          cos(u)*cosh(v)*sin(t) + cos(t)*sin(u)*sinh(v),          cosh(v)*sin(t)*sin(u) - cos(t)*cos(u)*sinh(v),          u*cos(t) + v*sin(t)) is a 1-parameter family of minimal surfaces connecting a helicoid to a catenoid. */ X():cos(u)*cosh(v)*sin((1-t)*pi/2) + cos((1-t)*pi/2)*sin(u)*sinh(v) Y():cosh(v)*sin((1-t)*pi/2)*sin(u) - cos((1-t)*pi/2)*cos(u)*sinh(v) Z():u*cos((1-t)*pi/2) + v*sin((1-t)*pi/2) [u]:0,4*pi [v]:-1.5,1.5
 Code: Name:enneperpolar(5) /* enneperpolar(n)[t](u_,v_):= {u*cos(t - v) - u^(2*n + 1)*cos(t - (2*n + 1)*v)/(2*n + 1), u*sin(t - v) + u^(2*n + 1)*sin(t - (2*n + 1)*v)/(2*n + 1), 2*u^(n + 1)*cos(t - (n + 1)*v)/(n + 1)} is the polar parametrization of a 1-parameter family of minimal surfaces such that {r,theta}->enneperpolar[n][0][r,theta] is Enneper's minimal surface of degree n. */ X():u*cos(t - v) - u^11*cos(t - 11*v)/11 Y():u*sin(t - v) + u^11*sin(t - 11*v)/11 Z():2*u^6*cos(t - 6*v)/6 [u]:0,  1.57 [v]:-pi,  pi
 Code: Name:ennepercatenoidpolar(1,1,1) /* ennepercatenoidpolar(n)[t](u,v):=( (n*(2*n + 1)*u^2*cos(t - v) + n*(2*n + 1)*cos(t + v) - u^(n + 1)*(n*u^(n + 1)*cos(t - v - 2*n*v) + 2*cos(t - n*v) + 4*n*cos(t - n*v)))/(n*(2*n + 1)*u), (n*(2*n + 1)*u^2*sin(t - v) - n*(2*n + 1)*sin(t + v) + u^(n + 1)*(2*sin(t - n*v) + 4*n*sin(t - n*v) + n*u^(n + 1)*sin(t + v - 2*(n + 1)*v)))/(n*(2*n + 1)*u), 2*(u^(n + 1)*cos(t - (n + 1)*v) + (n + 1)*(cos(t)*log(u) + v*sin(t)))/(n + 1)) ennepercatenoidpolar(n,a,b)[t](u,v):= ((n*(2*n + 1)*u^2*cos(t - v) + a^2*n*(2*n + 1)*cos(t + v) - b*u^(n + 1)*(2*a*cos(t - n*v) + 4*a*n*cos(t - n*v) + b*n*u^(n + 1)*cos(t - (2*n + 1)*v)))/(n*(2*n + 1)*u), (n*(2*n + 1)*u^2*sin(t - v) - a^2*n*(2*n + 1)*sin(t + v) + b*u^n*(b*n*u^(n + 2)*sin(t - v - 2*n*v) + 2*a*u*sin(t + v - (n + 1)*v) + 4*a*n*u*sin(t + v - (n + 1)*v)))/(n*(2*n + 1)*u), (2*b*u^(n + 1)*cos(t - (n + 1)*v) + 2*a*(n + 1)*cos(t)*log(u) + 2*a*(n + 1)*v*sin(t))/(n + 1)) ennepercatenoidpolar(n,a,b)[t](r,theta) is the polar parametrization of a 1-parameter family of minimal surfaces constructed from the minimal curve whose Weierstrass representation is given by f[z_]:=2 and g[z_]:=a/z + b*z^n. For t=0 and a=b=1 the surface has a catenoid-like bottom and an enneper-like top with n + 1 lobes. */ X():(3*u^2*cos(t - v) + 3*cos(t + v) - u^2*(2*cos(t - v) + 4*cos(t - v) + u^2*cos(t - 3*v)))/(3*u) Y():(3*u^2*sin(t - v) - 3*sin(t + v) +   u*(u^3*sin(t - 4*v) + 2*u*sin(t + v - 2*v) + 4*u*sin(t - v)))/(3*u) Z():(2*u^2*cos(t - 2*v) + 4*cos(t)*log(u) + 4*v*sin(t))/2 [u]:0.40,  1.08 [v]:-pi,  pi
 Code: Name:deltoidinvolutemin(1) /* deltoidinvolutemin(a)[t](u,v) = a*deltoidinvolutemin(1)[t](u,v) is a 1-parameter family of minimal surfaces such that (u,v)->deltoidinvolutemin(a)[0](u,v) is a minimal surface containing the involute of a deltoid as a geodesic. */ X():(1/3)*cos(t)*(8*cos(u/2)*cosh(v/2) + 2*cos(u)*cosh(v) - cos(2*u)*cosh(2*v)) + (1/3)*sin(t)*(-8*sin(u/2)*sinh(v/2) - 2*sin(u)*sinh(v) + sin(2*u)*sinh(2*v)) Y():(cos(t)*(-8*cosh(v/2)*sin(u/2) + 2*cosh(v)*sin(u) + cosh(2*v)*sin(2*u)))/3 + (sin(t)*(-8*cos(u/2)*sinh(v/2) + 2*cos(u)*sinh(v) + cos(2*u)*sinh(2*v)))/3 Z():(4*sin(t)*(3*u - 2*cosh(3*v/2)*sin(3*u/2)))/9 - (4*cos(t)*(3*v - 2*cos(3*u/2)*sinh(3*v/2)))/9 [u]:-2*pi,  2*pi [v]:-0.3,  0.3
 Code: Name:deltoidmin(1) /*deltoidmin(a)(t)(u,v):=           {a*cos(t)*(2*cos(u)*cosh(v) + cos(2*u)*cosh(2*v)) +            2*a*sin(t)*sin(u)*(-sinh(v) - cos(u)*sinh(2*v)),            -2*a*(cos(u)*sinh(v)*((-1 + cos(u)*cosh(v))*sin(t) +             2*a*cos(t)*sin(u)*sinh(v))) +             cosh(v)*sin(u)*(2*a*cos(t)*(1 - cos(u)*cosh(v)) +             2*a*sin(t)*sin(u)*sinh(v)),             -(8/3)*a*cos(3*u/2)*cosh(3*v/2)*sin(t) -            (8/3)*a*cos(t)*sin(3*u/2)*sinh(3*v/2)} is a 1-parameter family of minimal surfaces such that (u,v)->deltoidmin(a)(0)(u,v) is a minimal surface containing a deltoid as a geodesic. */ X():cos(t)*(2*cos(u)*cosh(v) + cos(2*u)*cosh(2*v)) +            2*sin(t)*sin(u)*(-sinh(v) - cos(u)*sinh(2*v)) Y():-2*(cos(u)*sinh(v)*((-1 + cos(u)*cosh(v))*sin(t) +             2*cos(t)*sin(u)*sinh(v))) +             cosh(v)*sin(u)*(2*cos(t)*(1 - cos(u)*cosh(v)) +             2*sin(t)*sin(u)*sinh(v)) Z():-(8/3)*cos(3*u/2)*cosh(3*v/2)*sin(t) -            (8/3)*cos(t)*sin(3*u/2)*sinh(3*v/2) [u]:-pi,  pi [v]:-0.3,  0.3
 Code: Name:circleinvolutemin(1,1) /* circleinvolutemin(1,a)[t]=a*circleinvolutemin(1,1)[t] is a 1-parameter family of minimal surfaces such that (u,v)->circleinvolutemin(1,a)[0](u,v) is a minimal surface containing the first involute of a circle as a geodesic. */ X():cos(t)*(cos(u)*cosh(v) + u*cosh(v)*sin(u) - v*cos(u)*sinh(v)) +  sin(t)*(v*cosh(v)*sin(u) + u*cos(u)*sinh(v) - sin(u)*sinh(v)) Y():sin(t)*(-v*cos(u)*cosh(v) + cos(u)*sinh(v) + u*sin(u)*sinh(v)) + cos(t)*(-u*cos(u)*cosh(v) + cosh(v)*sin(u) - v*sin(u)*sinh(v)) Z():-u*v*cos(t) + (u^2 - v^2)*sin(t)/2 [u]:0,  pi [v]:-1,  1
 Code: Name:catalandef(1) /* (u,v)->catalandef(a)[t](u,v)={a*cos(t)*(u - cosh(v)*sin(u)) +          a*sin(t)*(v - cos(u)*sinh(v)),          a*cos(t)*(1 - cos(u)*cosh(v)) +          a*sin(t)*sin(u)*sinh(v),          4*a*(1 - cos(u/2)*cosh(v/2))*sin(t) -          4*a*cos(t)*sin(u/2)*sinh(v/2)) is a 1-parameter family of minimal surfaces connecting Catalan's minimal surface to its conjugate. */ X():cos(t)*(u - cosh(v)*sin(u)) + sin(t)*(v - cos(u)*sinh(v)) Y():cos(t)*(1 - cos(u)*cosh(v)) + sin(t)*sin(u)*sinh(v) Z():4*(1 - cos(u/2)*cosh(v/2))*sin(t) - 4*cos(t)*sin(u/2)*sinh(v/2) [u]:-pi*2,  pi*2 [v]:-pi/2,  pi/2
 Code: Name:bourpolar(1,1) /*bourpolar(m)[t](u,v):=       (u^(m - 1)*cos(t - (m - 1)*v)/(m - 1) -        u^(m + 1)*cos(t - (m + 1)*v)/(m + 1),        u^(m - 1)*sin(t - (m - 1)*v)/(m - 1) +        u^(m + 1)*sin(t - (m + 1)*v)/(m + 1),        2*u^m*cos(t - m*v)/m) bourpolar(m,n)[t](r,theta):=       (r^(m - 1)*cos(t - (m - 1)*theta)/(m - 1) -        r^(m + 2*n - 1)*cos(t - (m + 2*n - 1)*theta)/(m + 2*n - 1),        r^(m - 1)*sin[t - (m - 1)*theta]/(m - 1) +        r^(m + 2*n - 1)*sin(t - (m + 2*n - 1)*theta)/(m + 2*n - 1),        2*r^(m + n - 1)*cos(t - (m + n - 1)*theta)/(m + n - 1)) {r,theta}->bourpolar[m,n][t][r,theta] is the polar parametrization of a 1-parameter family of minimal surfaces such that {r,theta}->bourpolar[m,n][0][r,theta] is Bour's minimal surface of degree {m,n}. */ X():cos(t) -u^2*cos(t - 2*v)/2 Y():cos(t) -u^2*sin(t - 2*v)/2 Z():2*u*cos(t-v) [u]:0,  pi/2 [v]:-pi,  pi

Please, let me know if you find any formula wrong.

To use these examples of parametric surfaces just save any code block in a file with k3ds extension and then load it while working in the parametric environement inside k3dsurf.
Phil999

Joined: 08 Feb 2007
Posts: 24

 Posted: Thu Jan 19, 2012 9:38 pm    Post subject: thank you
jolkaP

Joined: 17 Oct 2011
Posts: 12
Location: Marseille (France)

Posted: Tue Jan 31, 2012 11:06 pm    Post subject: Almost all parametric surfaces from this source

You welcome,

Here go all the parametric surfaces described in this source that can be expressed in k3dsurf. I tried to categorize them but of course some of them fall into multiples categories

FAMILIES OF MINIMAL SURFACES ( those where already in my post above, but here they are written in a clearer way; activate morph to see what happens)

In the next one, for t=0 you get Bour's minimal surface of degree (m,n)
 Code: X():u^(m - 1)*cos(t - (m - 1)*v)/(m - 1) -  u^(m + 2*n - 1)*cos(t - (m + 2*n - 1)*v)/(m + 2*n - 1) Y():u^(m - 1)*sin(t - (m - 1)*v)/(m - 1) +  u^(m + 2*n - 1)*sin(t - (m + 2*n - 1)*v)/(m + 2*n - 1) Z():2*u^(m + n - 1)*cos(t - (m + n - 1)*v)/(m + n - 1) [u]:0,  1.7 [v]:-pi,  pi
You have to replace m and n with integers. For example, for m=2 and n=1 you get
 Code: X():u*cos(t - v) -u^3*cos(t - 3*v)/3 Y():u*cos(t - v) -u^3*sin(t - 3*v)/3 Z():2*u^2*cos(t - 2*v)/2 [u]:0,  1.7 [v]:-pi,  pi

See Catalan's minimal surface become its conjugate and viceversa.
 Code: X():cos(t)*(u - cosh(v)*sin(u)) + sin(t)*(v - cos(u)*sinh(v)) Y():cos(t)*(1 - cos(u)*cosh(v)) + sin(t)*sin(u)*sinh(v) Z():4*(1 - cos(u/2)*cosh(v/2))*sin(t) - 4*cos(t)*sin(u/2)*sinh(v/2) [u]:-pi*2,  pi*2 [v]:-pi/2,  pi/2

In the next one, for t=0 you get a minimal surface containing first involute of a circle as a geodesic.
 Code: X():cos(t)*(cos(u)*cosh(v) + u*cosh(v)*sin(u) - v*cos(u)*sinh(v)) +  sin(t)*(v*cosh(v)*sin(u) + u*cos(u)*sinh(v) - sin(u)*sinh(v)) Y():sin(t)*(-v*cos(u)*cosh(v) + cos(u)*sinh(v) + u*sin(u)*sinh(v)) + cos(t)*(-u*cos(u)*cosh(v) + cosh(v)*sin(u) - v*sin(u)*sinh(v)) Z():-u*v*cos(t) + (u^2 - v^2)*sin(t)/2 [u]:0,  pi [v]:-1,  1

In the next one, for t=0 you get a minimal surface containing the involute of a deltoid as a geodesic.
 Code: X():(1/3)*cos(t)*(8*cos(u/2)*cosh(v/2) + 2*cos(u)*cosh(v) - cos(2*u)*cosh(2*v)) + (1/3)*sin(t)*(-8*sin(u/2)*sinh(v/2) - 2*sin(u)*sinh(v) + sin(2*u)*sinh(2*v)) Y():(cos(t)*(-8*cosh(v/2)*sin(u/2) + 2*cosh(v)*sin(u) + cosh(2*v)*sin(2*u)))/3 + (sin(t)*(-8*cos(u/2)*sinh(v/2) + 2*cos(u)*sinh(v) + cos(2*u)*sinh(2*v)))/3 Z():(4*sin(t)*(3*u - 2*cosh(3*v/2)*sin(3*u/2)))/9 - (4*cos(t)*(3*v - 2*cos(3*u/2)*sinh(3*v/2)))/9 [u]:-2*pi,  2*pi [v]:-0.3,  0.3

In the next one, for t=0 you get a minimal surface containing a deltoid as a geodesic.
 Code: X():a*cos(t)*(2*cos(u)*cosh(v) + cos(2*u)*cosh(2*v)) + 2*a*sin(t)*sin(u)*(-sinh(v) - cos(u)*sinh(2*v)) Y():-2*a*(cos(u)*sinh(v)*((-1 + cos(u)*cosh(v))*sin(t) + 2*a*cos(t)*sin(u)*sinh(v))) + cosh(v)*sin(u)*(2*a*cos(t)*(1 - cos(u)*cosh(v)) + 2*a*sin(t)*sin(u)*sinh(v)) Z():-(8/3)*a*cos(3*u/2)*cosh(3*v/2)*sin(t) - (8/3)*a*cos(t)*sin(3*u/2)*sinh(3*v/2) [u]:-pi,  pi [v]:-0.3,  0.3
You have to replace a with any positive number. For example, for a=1, you get.
 Code: X():cos(t)*(2*cos(u)*cosh(v) + cos(2*u)*cosh(2*v)) + 2*sin(t)*sin(u)*(-sinh(v) - cos(u)*sinh(2*v)) Y():-2*(cos(u)*sinh(v)*((-1 + cos(u)*cosh(v))*sin(t) + 2*cos(t)*sin(u)*sinh(v))) + cosh(v)*sin(u)*(2*cos(t)*(1 - cos(u)*cosh(v)) + 2*sin(t)*sin(u)*sinh(v)) Z():-(8/3)*cos(3*u/2)*cosh(3*v/2)*sin(t) - (8/3)*cos(t)*sin(3*u/2)*sinh(3*v/2) [u]:-pi,  pi [v]:-0.3,  0.3

The following describes a family of minimal surfaces constructed from the minimal curve whose Weierstrass representation is given by f[z_]:=2 and g[z_]:=a/z + b*z^n.
 Code: X():(n*(2*n + 1)*u^2*cos(t - v) + a^2*n*(2*n + 1)*cos(t + v) - b*u^(n + 1)*(2*a*cos(t - n*v) + 4*a*n*cos(t - n*v) + b*n*u^(n + 1)*cos(t - (2*n + 1)*v)))/(n*(2*n + 1)*u) Y():(n*(2*n + 1)*u^2*sin(t - v) - a^2*n*(2*n + 1)*sin(t + v) + b*u^n*(b*n*u^(n + 2)*sin(t - v - 2*n*v) + 2*a*u*sin(t + v - (n + 1)*v) + 4*a*n*u*sin(t + v - (n + 1)*v)))/(n*(2*n + 1)*u) Z():(2*b*u^(n + 1)*cos(t - (n + 1)*v) + 2*a*(n + 1)*cos(t)*log(u) + 2*a*(n + 1)*v*sin(t))/(n + 1) [u]:0.4,1.08 [v]:-pi,pi
Replace n with any integer, a and b with real numbers. For instance, for n=1, a=b=1 you get
 Code: X():(3*u^2*cos(t - v) + 3*cos(t + v) - u^2*(2*cos(t - v) + 4*cos(t - v) + u^2*cos(t - 3*v)))/(3*u) Y():(3*u^2*sin(t - v) - 3*sin(t + v) +  u*(u^3*sin(t - 4*v) + 2*u*sin(t + v - 2*v) + 4*u*sin(t - v)))/(3*u) Z():(2*u^2*cos(t - 2*v) + 4*cos(t)*log(u) + 4*v*sin(t))/2 [u]:0.40,  1.08 [v]:-pi,  pi

In the next, for t=0, you get Enneper's minimal surface of degree n.
 Code: X():u*cos(t - v) - u^(2*n + 1)*cos(t - (2*n + 1)*v)/(2*n + 1) Y():u*sin(t - v) + u^(2*n + 1)*sin(t - (2*n + 1)*v)/(2*n + 1) Z():2*u^(n + 1)*cos(t - (n + 1)*v)/(n + 1) [u]:0,1.58 [v]:-pi,pi
Replace n with any integer. For instance, for n=2 you get
 Code: X():u*cos(t - v) - u^5*cos(t - 5*v)/5 Y():u*sin(t - v) + u^5*sin(t - 5*v)/5 Z():2*u^3*cos(t - 3*v)/3 [u]:0,  1.58 [v]:-pi,  pi

See an helicoid become a catenoid and vice-versa.
 Code: X():cos(u)*cosh(v)*sin((1-t)*pi/2) + cos((1-t)*pi/2)*sin(u)*sinh(v) Y():cosh(v)*sin((1-t)*pi/2)*sin(u) - cos((1-t)*pi/2)*cos(u)*sinh(v) Z():u*cos((1-t)*pi/2) + v*sin((1-t)*pi/2) [u]:0,4*pi [v]:-1.5,1.5

In the next, for t=0, you get a minimal surface containing the involute of a hypocycloid as a geodesic
 Code: X():cos(t)*((a - b)*cos(u)*cosh(v) + b*cos((a - b)*u/b)*cosh((a - b)*v/b)) + sin(t)*((-a + b)*sin(u)*sinh(v) - b*sin((a - b)*u/b)*sinh((a - b)*v/b)) Y():cos(t)*((a - b)*cosh(v)*sin(u) - b*cosh((a - b)*v/b)*sin((a - b)*u/b)) + sin(t)*((a - b)*cos(u)*sinh(v) - b*cos(((a - b)*u)/b)*sinh((a - b)*v/b)) Z():(-4*(a - b)*b*cos((a*u)/(2*b))*cosh((a*v)/(2*b))*sin(t))/a - (4*(a - b)*b*cos(t)*sin((a*u)/(2*b))*sinh((a*v)/(2*b)))/a [u]:-pi,pi [v]:-1,1
You have to replace parameters a and b. For a=4 and b=1 you get
 Code: X():cos(t)*(3*cos(u)*cosh(v) + cos(3*u)*cosh(3*v)) + sin(t)*(-3*sin(u)*sinh(v) - sin(3*u)*sinh(3*v)) Y():cos(t)*(3*cosh(v)*sin(u) - cosh(3*v)*sin(3*u)) + sin(t)*(3*cos(u)*sinh(v) - cos((3*u))*sinh(3*v)) Z():-3*cos(2*u)*cosh(2*v)*sin(t) - 3*cos(t)*sin(2*u)*sinh(2*v) [u]:-pi,pi [v]:-1,1

In the next, for t=0, you get a minimal surface containing a parabola as a geodesic
 Code: X():2*(u*cos(t) + v*sin(t)) Y():((u^2 - v^2)*cos(t) + 2*u*v*sin(t)) Z():((-2*(u*v + atan(2*v/(u + sqrt(1 + u^2))))*cos(t) +          (-2*v^2 + log((u + sqrt(1 + u^2))^2 + 4*v^2))*sin(t) +           2*sqrt(1 + u^2)*(-(v*cos(t)) + u*sin(t))))/2 [u]:-2,2 [v]:-0.3,0.3

See a plane become a catenoid and vice-versa. The principal curves of each surface in this family are planar.
 Code: X():cos(t)*u + sin(u)*cosh(v) Y():sin(t)*cos(u)*cosh(v) Z():v + cos(t)*cos(u)*sinh(v) [u]:0,2*pi [v]:-2,2

In the next, for t=0, you get Richmond's surface with one planar end of degree n.
 Code: X():-cos(t + v)/(2*u) - u^3*cos(t - 3*v)/6 Y():-sin(t + v)/(2*u) + u^(2*n + 1)*sin(t - (2*n + 1)*v)/(4*n + 2) Z():u^n*cos(t - n*v)/n [u]:0.3,1.3 [v]:0,2*pi
Replace n with any integer. For instance, for n=1 you get
 Code: X():-cos(t + v)/(2*u) - u^3*cos(t - 3*v)/6 Y():-sin(t + v)/(2*u) + u^3*sin(t - 3*v)/6 Z():u*cos(t - v) [u]:0.3,1.3 [v]:0,2*pi

MINIMAL SURFACES

Bour's minimal surface
 Code: X():(2*u^2 - u^4 - 2*v^2 + 6*u^2*v^2 - v^4)/4 Y():u*v*(-1 - u^2 + v^2) Z():(2/3)*(u^3 - 3*u*v^2) [u]:-1,  1 [v]:-1,  1

Catalan's minimal surface
 Code: X():(u - cosh(v)*sin(u)) Y():(1 - cos(u)*cosh(v)) Z():- 4*sin(u/2)*sinh(v/2) [u]:-pi*2,  pi*2 [v]:-pi/2,  pi/2

Enneper's minimal surface
 Code: X():u -u^3/3  + u*v^2 Y():-v +v^3/3  - v*u^2 Z():u^2 - v^2 [u]:-1.75,  1.75 [v]:-1.75,  1.75

Henneberg's minimal surface
 Code: X():2*sinh(u)*cos(v) - (2/3)*sinh(3*u)*cos(3*v) Y():2*sinh(u)*sin(v) + (2/3)*sinh(3*u)*sin(3*v) Z():2*cosh(2*u)*cos(2*v) [u]:0.3,1 [v]:-pi,pi

Richmond's minimal surface is a minimal surface with one planar end
 Code: X():(-3*u - u^5 + 2*u^3*v^2 + 3*u*v^4)/(6*(u^2 + v^2)) Y():(-3*v - 3*u^4*v - 2*u^2*v^3 + v^5)/(6*(u^2 + v^2)) Z():u [u]:-1,1 [v]:-1,1

Scherk's minimal surface
 Code: X():u Y():v Z():(1/a)*log(cos(a*v)/cos(a*u)) [u]:0.01,3*pi/2 + 0.01 [v]:-pi/2 + 0.01,3*pi/2 + 0.01
You have to replace parameter a. For a=1 you get
 Code: X():u Y():v Z():log(cos(v)/cos(u)) [u]:0.01,3*pi/2 + 0.01 [v]:-pi/2 + 0.01,3*pi/2 + 0.01

Thomsen's minimal surface
 Code: X():b*u/a + sqrt(1+b^2)*sinh(a*u)*cos(a*v)/a^2 Y():sqrt(1 + b^2)*v/a + b*cosh(a*u)*sin(a*v)/a^2 Z():sinh(a*u)*sin(a*v)/a^2 [u]:-pi/2,pi/2 [v]:0,2*pi
You have to replace parameters a and b. For a=1 and b=2 you get:
 Code: X():-2*u+sqrt(5)*sinh(u)*cos(v) Y():sqrt(5)*v-2*cosh(u)*sin(v) Z():sinh(u)*sin(v) [u]:-pi/2,pi/2 [v]:0,2*pi

COMPACT SURFACES

Astroidial ellipsoid with axes of lengths a, b and c
 Code: X():(a*cos(u)*cos(v))^3 Y():(b*sin(u)*cos(v))^3 Z():(c*sin(v))^3 [u]:0,  2*pi [v]:-pi/2,  pi/2
You have to replace a,b and c. For example, for a=b=c=1 you get
 Code: X():(cos(u)*cos(v))^3 Y():(sin(u)*cos(v))^3 Z():sin(v)^3 [u]:0,  2*pi [v]:-pi/2,  pi/2

Bohemian dome formed by moving an ellipse along a circle in a perpendicular plane so that the ellipse remains parallel to a plane
 Code: X():a*cos(u) Y():a*sin(u)+b*cos(v) Z():c*sin(v) [u]:0,  2*pi [v]:-pi,  pi
You have to replace a,b and c. For example, for a=1, b=2 and c=1 you get
 Code: X():cos(u) Y():sin(u)+2*cos(v) Z():sin(v) [u]:0,  2*pi [v]:-pi,  pi

Boy's surface
 Code: X():(a/2)*(-cos(v)^2 + 2*cos(u)^2*sin(v)^2 + cos(v)*cos(u)*sin(v)*(-cos(v)^2 + cos(u)^2*sin(v)^2) - sin(v)^2*sin(u)^2 + 2*cos(v)*sin(v)*sin(u)*(-cos(v)^2 + sin(v)^2*sin(u)^2) - sin(v)^4*sin(4*u)/4) Y():(sqrt(3)/2)*b*(-cos(v)^2 + cos(v)*cos(u)*sin(v)*(cos(v)^2 - cos(u)^2*sin(v)^2) + sin(v)^2*sin(u)^2 - (sin(v)^4*sin(4*u))/4) Z():c*(cos(v) + cos(u)*sin(v) + sin(u)*sin(v))*(-4*sin(v)*(cos(u) - sin(u))*(-cos(v) + cos(u)*sin(v))* (cos(v) - sin(u)*sin(v)) + (cos(v) + cos(u)*sin(v) + sin(u)*sin(v) [u]:-pi/2,  pi/2 [v]:-pi/2,  pi/2
You have to replace a,b and c. For example, for a=b=4 and c=1 you get
 Code: X():2*(-cos(v)^2 + 2*cos(u)^2*sin(v)^2 + cos(v)*cos(u)*sin(v)*(-cos(v)^2 + cos(u)^2*sin(v)^2) - sin(v)^2*sin(u)^2 + 2*cos(v)*sin(v)*sin(u)* (-cos(v)^2 + sin(v)^2*sin(u)^2) - sin(v)^4*sin(4*u)/4) Y():(sqrt(3)/2)*4*(-cos(v)^2 + cos(v)*cos(u)*sin(v)*(cos(v)^2 - cos(u)^2*sin(v)^2) + sin(v)^2*sin(u)^2 - (sin(v)^4*sin(4*u))/4) Z():(cos(v) + cos(u)*sin(v) + sin(u)*sin(v))* (-4*sin(v)*(cos(u) - sin(u))*(-cos(v) + cos(u)*sin(v))* (cos(v) - sin(u)*sin(v)) +(cos(v) + cos(u)*sin(v) + sin(u)*sin(v))^3) [u]:-pi/2,  pi/2 [v]:-pi/2,  pi/2

Cossurface
 Code: X():cos(u) Y():cos(v) Z():cos(u+v) [u]:-pi,pi [v]:-pi,pi

A cross cap
 Code: X():sin(u) * sin(2 * v) / 2 Y():sin(2 * u) * cos(v) * cos(v) Z():cos(2 * u) * cos(v) * cos(v) [u]:-pi/2,  pi/2 [v]:-pi/2,  pi/2

Eight turning on another eight
 Code: X():sin(u)*sin(v) Y():cos(u)*sin(u)*sin(v) Z():cos(v)*sin(v) [u]:-pi,  pi [v]:-pi/2,  pi/2

A cyclide of Dupin of radius k whose focal sets are the ellipse u->(a*cos(u),sqrt(a^2 - c^2)*Sin(u),0} and the hyperbola v->(c*sec(v),0,sqrt(a^2 - c^2)*tan(v))
 Code: X():(c*(k - c*cos(u)) + a*cos(u)*(a - k*cos(v)))/ (a - c*cos(u)*cos(v)) Y(): (sqrt(a^2 - c^2)*(a - k*cos(v))*sin(u))/ (a - c*cos(u)*cos(v)) Z():(sqrt(a^2 - c^2)*(k - c*cos(u))*sin(v))/(a - c*cos(u)*cos(v)) [u]:-pi,  pi [v]:-pi,  pi
You have to replace a,c and k. For example for a=8, c=3 and k=5 you get
 Code: X():(3*(5 - 3*cos(u)) + 8*cos(u)*(8 - 5*cos(v)))/(8 - 3*cos(u)*cos(v)) Y():(sqrt(8^2 - 3^2)*(8 - 5*cos(v))*sin(u))/(8 - 3*cos(u)*cos(v)) Z():(sqrt(8^2 - 3^2)*(5 - 3*cos(u))*sin(v))/(8 - 3*cos(u)*cos(v)) [u]:-pi,  pi [v]:-pi,  pi

An ellipsoid with axes of lengths a, b and c
 Code: X():a*cos(v)*cos(u) Y():b*cos(v)*sin(u) Z():c*sin(v) [u]:-pi,  pi [v]:-pi/2,  pi/2
You have to replace a,b and c with non-zero real numbers. For a=1, b=2, c=3 you get
 Code: X():cos(v)*cos(u) Y():2*cos(v)*sin(u) Z():3*sin(v) [u]:-pi,  pi [v]:-pi/2,  pi/2

A generalized cube
 Code: X():a*(cos(u)*sqrt(cos(u)^2)^(n - 1) + sin(u)*sqrt(sin(u)^2)^(n - 1))*(cos(v)*sqrt(cos(v)^2)^(n - 1) + sin(v)*sqrt(sin(v)^2)^(n - 1)) Y():b*(-cos(u)*sqrt(cos(u)^2)^(n - 1) + sin(u)*sqrt(sin(u)^2)^(n - 1))*(cos(v)*sqrt(cos(v)^2)^(n - 1) + sin(v)*sqrt(sin(v)^2)^(n - 1)) Z():c*(-cos(v)*sqrt(cos(v)^2)^(n - 1) + sin(v)*sqrt(sin(v)^2)^(n - 1)) [u]:-pi/2,  pi/2 [v]:-pi,  pi
You have to replace n with a natural number and a,b,c with positive real numbers. For example, for n=4, a=b=c=1 you get
 Code: X():cos(u)*abs(cos(u))^3+sin(u)*abs(sin(u))^3*(cos(v)*abs(cos(v))^3+sin(v)*abs(sin(v))^3) Y():-cos(u)*abs(cos(u))^3+sin(u)*abs(sin(u))^3*(cos(v)*abs(cos(v))^3+sin(v)*abs(sin(v))^3) Z():-cos(v)*abs(cos(v))^3+sin(v)*abs(sin(v))^3 [u]:-pi/2,  pi/2 [v]:-pi,  pi

A generalized octahedron.
 Code: X():a*cos(u)*cos(v)*sqrt(cos(u)^2*cos(v)^2)^(n - 1) Y():b*sin(u)*cos(v)*sqrt(sin(u)^2*cos(v)^2)^(n - 1) Z():c*sin(v)*sqrt(sin(v)^2)^(n - 1) [u]:-pi/2,  pi/2 [v]:-pi,  pi
You have to replace n with a natural number and a,b,c with positive real numbers. For n=1 you get an ellipsoid, for n=2 and a=b=c you get an ordinary octahedron and for n=3 you get an astroidial ellipsoid. For example, for n=2, a=b=c=1 you get
 Code: X():cos(u)*cos(v)*abs(cos(u)*cos(v)) Y():sin(u)*cos(v)*abs(sin(u)*cos(v)) Z():sin(v)*abs(sin(v)) [u]:-pi/2,  pi/2 [v]:-pi,  pi

A Klein bottle formed by moving and twisting a figure eight along a circle of radius a. The surface is nonorientable and a neighborhood of the self-intersection curve is nonorientable.
 Code: X():(a + cos(u/2)*sin(v) - sin(u/2)*sin(2*v))*cos(u) Y():(a + cos(u/2)*sin(v) - sin(u/2)*sin(2*v))*sin(u) Z():sin(u/2)*sin(v) + cos(u/2)*sin(2*v) [u]:-pi/4,3*pi/2 [v]:-pi,pi
You have to replace a. For a=2, you get
 Code: X():(2 + cos(u/2)*sin(v) - sin(u/2)*sin(2*v))*cos(u) Y():(2 + cos(u/2)*sin(v) - sin(u/2)*sin(2*v))*sin(u) Z():sin(u/2)*sin(v) + cos(u/2)*sin(2*v) [u]:-pi/4,3*pi/2 [v]:-pi,pi

A Klein bottle in which a neighbourhood of self-intersection curve is orientable
 Code: X():((u-abs(u))/(2*u))*sin(u)+ ((u+abs(u))/(2*u))*(10*sin(0.105*u) + 2*(1 + 0.066*u)*          (cos(0.105*u) + 4*cos(0.21*u))*cos(v)*          (sin(0.105*u) + 2*sin(0.21*u))/          sqrt(100*cos(0.105*u)^2 + 4*(cos(0.105*u) +           4*cos(0.21*u))^2*(sin(0.105*u) + 2*sin(0.21*u))^2)) Y():((u-abs(u))/(2*u))*(- 2 + cos(u))*cos(v)+ ((u+abs(u))/(2*u))*((sin(0.105*u) + 2*sin(0.21*u))^2 -          (10*(1 + 0.033*2*u)*cos(0.105*u)*cos(v))/          sqrt(100*cos(0.105*u)^2 + 4*(cos(0.105*u) +           4*cos(0.21*u))^2*(sin(0.105*u) + 2*sin(0.21*u))^2)) Z():((u-abs(u))/(2*u))*(2 - cos(u))*sin(v)+ ((u+abs(u))/(2*u))*((1 + 0.066*u)*sin(v)) [u]:-pi,29.9517 [v]:-pi,pi

WRI's version of a Klein bottle. The self-intersection curve has an orientable neighbourhood.
 Code: X():if(sin(u)<0,(6*cos(u)*(1 + sin(u)) + 4*(1 - cos(u)/2)*cos(v + pi)), (6*cos(u)*(1 + sin(u)) + 4*(1 - cos(u)/2)*cos(u)*cos(v))) Y():if(sin(u)<0,(16*sin(u)),(16*sin(u) + 4*(1 - cos(u)/2)*sin(u)*cos(v))) Z():4*(1 - cos(u)/2)*sin(v) [u]:0,2*pi [v]:0,2*pi

A pillow
 Code: X():cos(u) Y():cos(v) Z():sin(u)*sin(v) [u]:-pi,pi [v]:-pi,pi

A pseudocrosscap in R^3
 Code: X():(1 - u^2)*sin(v) Y():(1 - u^2)*sin(2*v) Z():u [u]:-1,1 [v]:0,2*pi

Steiner's Roman surface
 Code: X():(1/2)*sin(2*u)*cos(v)^2 Y():(1/2)*sin(u)*sin(2*v) Z():(1/2)*cos(u)*sin(2*v) [u]:0,pi [v]:-pi/2,pi/2

n-th Roman surface
 Code: X():(1/2)*(cos(u)*cos(v)^2*sin(u))^n Y():(1/2)*(cos(v)*sin(u)*sin(v))^n Z():(1/2)*(cos(u)*cos(v)*sin(v))^n [u]:0,pi [v]:-pi,pi
You have to replace n with any positive integer. For n=3 you get.
 Code: X():(1/2)*(cos(v)^2*sin(u))^3 Y():(1/2)*(cos(v)*sin(u)*sin(v))^3 Z():(1/2)*(cos(u)*cos(v)*sin(v))^3 [u]:0,pi [v]:-pi,pi

Sinsurface
 Code: X():sin(u) Y():sin(v) Z():sin(u+v) [u]:-pi,pi [v]:-pi,pi

A surface resembling a snail
 Code: X():u*cos(v)*sin(u) Y():u*cos(u)*cos(v) Z():-u*sin(v) [u]:-pi,pi [v]:-pi,pi

COMPACT REVOLUTION SURFACES

A parametrization of the Earth (with equatorial diameter 12756.4 kilometers and polar diameter 12713.2 kilometers)
 Code: X():6378.2*cos(u)*cos(v) Y():6378.2*sin(u)*cos(v) Z():6356.6*sin(v) [u]:-pi,  pi [v]:-pi/2,  pi/2

Eight surface is a surface of revolution generated by an eight-shaped curve.
 Code: X():cos(u)*sin(2*v) Y():sin(u)*sin(2*v) Z():sin(v) [u]:-pi,  pi [v]:-pi/2,  pi/2

Heart is a surface of revolution generated by a cardioid with the axis of revolution passing through the cusp
 Code: X():2*cos(u)*(1 + cos(v))*sin(v) Y():2*sin(u)*(1 + cos(v))*sin(v) Z():-2*cos(v)*(1 + cos(v)) [u]:-pi/2,pi/2 [v]:-pi,pi

A circular cylinder of radius a inverted with respect to a sphere of radius rho. It is a cyclide of Dupin.
 Code: X():a*rho^2*cos(u)/(a^2 + v^2) Y():a*rho^2*sin(u)/(a^2 + v^2) Z():rho^2*v/(a^2 + v^2) [u]:-pi,pi [v]:-rho,rho
You have to replace rho and a. For example, for rho=40, a=1 you get
 Code: X():40^2*cos(u)/(1+v^2) Y():40^2*sin(u)/(1+v^2) Z():40^2*v/(1+v^2) [u]:-pi,pi [v]:-40,40

A torus inverted with respect to a sphere of radius rho. It is a cyclide of Dupin.
 Code: X():rho^2*cos(u)*(a + b*cos(v))/(a^2 + b^2 + 2*a*b*cos(v)) Y():rho^2*(a + b*cos(v))*sin(u)/(a^2 + b^2 + 2*a*b*cos(v)) Z():b*rho^2*sin(v)/(a^2 + b^2 + 2*a*b*cos(v)) [u]:-pi,pi [v]:-pi,pi
You have to replace rho, a and b. For example, for rho=40, a=8 and b=3 you get
 Code: X():40^2*cos(u)*(8+3*cos(v))/(90+48*cos(v)) Y():40^2*(8+3*cos(v))*sin(u)/(90+48*cos(v)) Z():8*40^2*sin(v)/(90+48*cos(v)) [u]:-pi,pi [v]:-pi,pi

Kidney is a surface of revolution generated by a nephroid
 Code: X():cos(u)*(3*cos(v) - cos(3*v)) Y():sin(u)*(3*cos(v) - cos(3*v)) Z():(3*sin(v) - sin(3*v)) [u]:0,2*pi [v]:-pi/2,pi/2

Generalized paraboloid's polar parametrization
 Code: X():a*u*cos(v) Y():b*u*sin(v) Z():u^n [u]:0,1 [v]:0,2*pi
You have to replace n, a and b. For example, for a=n=2 and c=1 you get
 Code: X():2*u*cos(v) Y():u*sin(v) Z():u^2 [u]:0,1 [v]:0,2*pi

The sphere's standard parametrization
 Code: X():cos(v)*cos(u) Y():cos(v)*sin(u) Z():sin(v) [u]:-pi,pi [v]:-pi/2,pi/2

The torus formed by revolving a circle of radius b in the xz-plane about the z-axis along a circle of radius a in the xy-plane.
 Code: X():(a + b*cos(v))*cos(u) Y():(a + b*cos(v))*sin(u) Z():b*sin(v) [u]:0,2*pi [v]:-pi,pi
You have to replace a and b. For example, for a=8 and b=3 you get
 Code: X():(8+3*cos(v))*cos(u) Y():(8+3*cos(v))*sin(u) Z():3*sin(v) [u]:0,2*pi [v]:-pi,pi

FRUITS REVOLUTION SURFACES

Apple
 Code: X():cos(u)*(4+3.8*cos(v)) Y():sin(u)*(4+3.8*cos(v)) Z():(cos(v)+sin(v)-1)*(1+sin(v))*log(1 - pi*v/10) + 7.5*sin(v) [u]:0,  2*pi [v]:-pi,  pi

Pear
 Code: X():cos(u)*(4 + 3.8*cos(v)) Y():sin(u)*(4 + 3.8*cos(v)) Z():((cos(v) - 3.5)*(1 + sin(v))*log(1 - pi*v/10) + 10*sin(v))*(1 - 0.4*cos(v/2)*(1 + 0.2*sin(v^2))) [u]:0,2*pi [v]:-30*pi/31,30*pi/31

NON-COMPACT REVOLUTION SURFACES

Rotated witch of Agnesi
 Code: X():-cos(u)*cos(v)^2 Y():-cos(v)^2*sin(u) Z():tan(v) [u]:0,  2*pi [v]:-1,  1

A catenoid is the minimal surface of revolution generated by the catenary
 Code: X():a*cosh(v/a)*cos(u) Y():a*cosh(v/a)*sin(u) Z():v [u]:-pi,  pi [v]:-pi,  pi
You have to replace a with a positive real number. For example, for a=1 you get.
 Code: X():2*cosh(v/2)*cos(u) Y():2*cosh(v/2)*sin(u) Z():v [u]:-pi,  pi [v]:-pi,  pi

Circular cone of radius a and slope b/a
 Code: X():a*v*cos(u) Y():a*v*sin(u) Z():b*v [u]:-pi,  pi [v]:-1,  1
You have to replace a and b. For example for a=1 and b=0.5 you get
 Code: X():v*cos(u) Y():v*sin(u) Z():v/2 [u]:-pi,  pi [v]:-1,  1

Circular cylinder
 Code: X():cos(u) Y():sin(u) Z():v [u]:-pi,  pi [v]:-4,  4

A circular cone inverted with respect to a sphere of radius rho. It is a cyclide of Dupin
 Code: X():a*rho^2*cos(u)/(a^2*v + b^2*v) Y():a*rho^2*sin(u)/(a^2*v + b^2*v) Z():b*rho^2/(a^2*v + b^2*v) [u]:-pi,pi [v]:0.1,rho
You have to replace rho, a and b. For example, for rho=40, a=b=1 you get
 Code: X():40^2*cos(u)/(2*v) Y():40^2*sin(u)/(2*v) Z():40^2/(2*v) [u]:-pi,pi [v]:0.1,40

Sphere's Mercator parametrization
 Code: X():cos(u)/cosh(v) Y():sin(u)/cosh(v) Z():tanh(v) [u]:0,3*pi/2 [v]:-0.49*pi,0.49*pi

Polar parametrization of a plane
 Code: X():u*cos(v) Y():u*sin(v) Z():0 [u]:0.01,pi [v]:-pi,pi

Pseudosphere: surface of revolution of constant negative curvature.
 Code: X():cos(u)*sin(v) Y():sin(u)*sin(v) Z():(cos(v) + log(tan(v/2))) [u]:0,2*pi [v]:0.001,pi-0.001

Pseudosphere's another parametrization
 Code: X():cos(u)*tanh(v) Y():sin(u)*tanh(v) Z():(1/cosh(v) + log(tanh(v/2))) [u]:0,2*pi [v]:0.01,2

Sphere's polar stereographic parametrization
 Code: X():2*u*cos(v)/(1 + u^2) Y():2*u*sin(v)/(1 + u^2) Z():(-1 + u^2)/(1 + u^2) [u]:0,3 [v]:0,2*pi

Torus parametrization
 Code: X():u*cos(v) Y():u*sin(v) Z():pm*sqrt(b^2 - (r - a)^2) [u]:a-b,a+b [v]:0,2*pi
You have to replace pm with +1 or -1 and a and b with positive real numbers such as a>b. For example for pm=1, a=8 and b=3 you get
 Code: X():u*cos(v) Y():u*sin(v) Z():sqrt(9-(u-8)^2) [u]:5,11 [v]:0,2*pi

PARAMETRIZATIONS BY PRINCIPAL CURVES

Dini's surface of constant negative curvature
 Code: X():cos(b)*cos(v)/cosh((u - v*sin(b))/cos(b)) Y():cos(b)*sin(v)/cosh((u - v*sin(b))/cos(b)) Z():(u - cos(b)*tanh((u - v*sin(b))/cos(b))) [u]:-3,  3 [v]:0,  6*pi
You have to replace b. For example, for b=0.2 you get
 Code: X():cos(0.2)*cos(v)/cosh((u - v*sin(0.2))/cos(0.2)) Y():cos(0.2)*sin(v)/cosh((u - v*sin(0.2))/cos(0.2)) Z():(u - cos(0.2)*tanh((u - v*sin(0.2))/cos(0.2))) [u]:-3,  3 [v]:0,  6*pi

Circular helicoid
 Code: X():cos(u + v)*sinh(-u + v) Y():sin(u + v)*sinh(-u + v) Z():u + v [u]:-pi/2,pi/2 [v]:-pi/2,pi/2

Kuen's surface of constant negative curvature
 Code: X():2*cosh(u)*(cos(v) + v*sin(v))/(v^2 + cosh(u)^2) Y():2*cosh(u)*(sin(v) - v*cos(v))/(v^2 + cosh(u)^2) Z():(u - sinh(2*u)/(v^2 + cosh(u)^2)) [u]:-1.91,  1.91 [v]:-1.13,  1.13

Pseudosphere
 Code: X():cos(v)/cosh(u) Y():sin(v)/cosh(u) Z():u-tanh(u) [u]:-2.8,2.8 [v]:0,2*pi

PARAMETRISATIONS BY ASYMPTOTIC CURVES

Catenoid
 Code: X():cos((u + v)/2)*cosh((u - v)/2) Y():sin((u + v)/2)*cosh((u - v)/2) Z():(u-v)/2 [u]:-pi,  pi [v]:-pi,  pi

Dini's surface of constant negative curvature
 Code: X():cos(b)*cos(u-v)/cosh((u+v - (u-v)*sin(b))/cos(b)) Y():cos(b)*sin(u-v)/cosh((u+v - (u-v)*sin(b))/cos(b)) Z():(u+v - cos(b)*tanh((u+v - (u-v)*sin(b))/cos(b))) [u]:-3,  3 [v]:0,  6*pi
You have to replace b. For example, for b=0.2 you get
 Code: X():cos(0.2)*cos(u-v)/cosh((u+v - (u-v)*sin(0.2))/cos(0.2)) Y():cos(0.2)*sin(u-v)/cosh((u+v - (u-v)*sin(0.2))/cos(0.2)) Z():(u+v - cos(0.2)*tanh((u+v - (u-v)*sin(0.2))/cos(0.2))) [u]:-3,  3 [v]:0,  6*pi

Exponential twist (v cos(u),v sin(u), exp(c u))
 Code: X():exp(c*(u - v)/2)*cos(u) Y():exp(c*(u - v)/2)*sin(u) Z():exp(c*u) [u]:-pi,  2*pi [v]:-pi,  2*pi
You have to replace c. For example, for c=0.3 you get
 Code: X():exp(0.3*(u - v)/2)*cos(u) Y():exp(0.3*(u - v)/2)*sin(u) Z():exp(0.3*u) [u]:-pi,  2*pi [v]:-pi,  2*pi

Funnel (v cos(u), v sin(u), log(v))
 Code: X():exp(u - v)*cos(u + v) Y():-exp(u - v)*sin(u + v) Z():(u - v) [u]:-pi/2,  pi/2 [v]:0.0,  pi

Kuen's surface of constant negative curvature
 Code: X():2*cosh(u+v)*(cos(u-v) + (u-v)*sin(u-v))/((u-v)^2 + cosh(u+v)^2) Y():2*cosh(u+v)*(sin(u-v) - (u-v)*cos(u-v))/((u-v)^2 + cosh(u+v)^2) Z():(u+v - sinh(2*(u+v))/((u-v)^2 + cosh(u+v)^2)) [u]:-2,2 [v]:-2,2

Pseudosphere
 Code: X():cos(u-v)/cosh(u+v) Y():sin(u-v)/cosh(u+v) Z():u+v-tanh(u+v) [u]:-1,1 [v]:0,pi

Shoe
 Code: X():(-3*b/(4*a))^(1/3)*(u-v)^(2/3) Y():-u-v Z():(b/4)*(u^2+14*u*v+v^2) [u]:-1,1.2 [v]:-1,1.2
You have to replace a and b. For example for a=-1 and b=1 you get
 Code: X():(3/4)^(1/3)*(u-v)^(2/3) Y():-u-v Z():(-1/4)*(u^2+14*u*v+v^2) [u]:-1,1.2 [v]:-1,1.2

Torus
 Code: X():(cos((u + v)/2)/(1 + cosh((u - v)/sqrt(8))^2)) Y():(sin((u + v)/2)/(1 + cosh((u - v)/sqrt(8))^2)) Z():pm*(cosh((u - v)/sqrt(8))/(1 + cosh((u - v)/sqrt(8))^2)) [u]:-pi,pi [v]:-pi,pi
You have to replace pm with +1 or -1. For example for pm=1 you get
 Code: X():(cos((u + v)/2)/(1 + cosh((u - v)/sqrt(8))^2)) Y():(sin((u + v)/2)/(1 + cosh((u - v)/sqrt(8))^2)) Z():(cosh((u - v)/sqrt(8))/(1 + cosh((u - v)/sqrt(8))^2)) [u]:-pi,pi [v]:-pi,pi

OTHER SURFACES

A modified catenoid
 Code: X():a*cosh(v)*cos(u) Y():b*cosh(v)*sin(u) Z():c*v [u]:-pi,  pi [v]:-pi,  pi
You have to replace a,b and c. For example for a=3, b=2, c=1 you get
 Code: X():2*cosh(v)*cos(u) Y():3*cosh(v)*sin(u) Z():v [u]:-pi,  pi [v]:-pi,  pi

An isothermal parametrization of a catenoid
 Code: X():a*cosh(v/a)*cos(u/a) Y():a*cosh(v/a)*sin(u/a) Z():v [u]:-pi,  pi [v]:-pi,  pi
You have to replace a, for example for a=2 you get
 Code: X():2*cosh(v/2)*cos(u/2) Y():2*cosh(v/2)*sin(u/2) Z():v [u]:-pi,  pi [v]:-pi,  pi

Dini's surface of constant negative curvature -1/a^2. It is the generalized helicoid of slant b generated by a tractrix. The case b=0 is the standard parametrization of a pseudosphere.
 Code: X():a*cos(u)*sin(v) Y():a*sin(u)*sin(v) Z():a*(cos(v) + log(tan(v/2))) + b*u [u]:0,  4*pi [v]:0.05,  1
You have to replace a and b, for example for a=1 and b=0.2 you get
 Code: X():cos(u)*sin(v) Y():sin(u)*sin(v) Z():(cos(v) + log(tan(v/2))) + 0.2*u [u]:0,  4*pi [v]:0.05,  1

Elliptic paraboloid
 Code: X():u Y():v Z():u^2/a^2 + v^2/b^2 [u]:-1,  1 [v]:-1,  1
You have to replace a and b. For example for a=1 and b=2 you get
 Code: X():u Y():v Z():u^2 + v^2/2^2 [u]:-1,  1 [v]:-1,  1

Helicoid-like surface whose twisting varies exponentially
 Code: X():v*cos(u) Y():v*sin(u) Z():exp(c*u) [u]:0,  4*pi [v]:-1,  1
You have to replace c. For example for c=0.2 you get
 Code: X():v*cos(u) Y():v*sin(u) Z():exp(0.2*u) [u]:0,  4*pi [v]:-1,  1

Funnel
 Code: X():a*v*cos(u) Y():b*v*sin(u) Z():c*log(v) [u]:-pi,  pi [v]:0.01,  1
You have to replace a, b and c. For example for a=5, b=1, c=2 you get
 Code: X():5*v*cos(u) Y():v*sin(u) Z():2*log(v) [u]:-pi,  pi [v]:0.01,  1

Handkerchief shaped surface
 Code: X():u Y():u Z():(1/3)*u^3 + u*v^2 +a*(u^2 - v^2) [u]:-1 , 1 [v]:0 , 1
You have to replace a. For example, for a=1 you get
 Code: X():u Y():u Z():(1/3)*u^3 + u*v^2 +(u^2 - v^2) [u]:-1 , 1 [v]:0 , 1

Elliptical helicoid of slant c.
 Code: X():a*v*cos(u) Y():b*v*sin(u) Z():c*u [u]:0,4*pi [v]:-1,1
You have to replace a,b and c. For example for a=1, b=1, c=0.3
 Code: X():v*cos(u) Y():v*sin(u) Z():0.3*u [u]:0,4*pi [v]:-1,1

Elliptical hyperboloid of two sheets
 Code: X():a*cosh(u)*cosh(v) Y():b*sinh(u)*cosh(v) Z():c*sinh(v) [u]:-1,1 [v]:-1,1
You have to replace a, b and c. For example, for a=b=c=1 you get
 Code: X():cosh(u)*cosh(v) Y():sinh(u)*cosh(v) Z():sinh(v) [u]:-1,1 [v]:-1,1

Hyperbolic paraboloid
 Code: X():u Y():v Z():u*v [u]:-1,1 [v]:-1,1

Elliptical hyperboloid of one sheet
 Code: X():a*cosh(v)*cos(u) Y():b*cosh(v)*sin(u) Z():c*sinh(v) [u]:0,2*pi [v]:-2,2
You have to replace a, b and c. For example for a=1, b=2 and c=3 you get
 Code: X():cosh(v)*cos(u) Y():2*cosh(v)*sin(u) Z():3*sinh(v) [u]:0,2*pi [v]:-2,2

Another parametrization of an hyperboloid
 Code: X():a*sec(v)*cos(u) Y():b*sec(v)*sin(u) Z():c*tan(v) [u]:0,3*pi/2 [v]:-pi/2,pi/2
You have to replace a, b and c. For example for a=1, b=2 and c=3 you get
 Code: X():sec(v)*cos(u) Y():2*sec(v)*sin(u) Z():3*tan(v) [u]:0,3*pi/2 [v]:-pi/2,pi/2

Polar parametrization of Jorge-Meeks 2-oid
 Code: X():(1/8)*log((1 + u^2 + 2*u*cos(v))/(1 + u^2 - 2*u*cos(v))) Y():-u*(1 + u^2)*sin(v)/(2*(1 + u^4 - 2*u^2*cos(2*v))) Z():(1 - u^4)/(4*(1 + u^4 - 2*u^2*cos(2*v))) [u]:-1.9,1.9 [v]:0.1,pi-0.1

Kuen's surface of constant negative curvature
 Code: X():2*(cos(u) + u*sin(u))*sin(v)/(1 + u^2*sin(v)^2) Y():2*(sin(u) - u*cos(u))*sin(v)/(1 + u^2*sin(v)^2) Z():log(tan(v/2)) + 2*cos(v)/(1 + u^2*sin(v)^2) [u]:-4,4 [v]:0.01,  pi -0.01

Menn's surface
 Code: X():u Y():v Z():a*u^4 + u^2*v - v^2 [u]:-1.5,1.5 [v]:-1.5,1.5
You have to replace a. For example, for a=1, you get
 Code: X():u Y():v Z():u^4 + u^2*v - v^2 [u]:-1.5,1.5 [v]:-1.5,1.5

Mercator injection of an ellipsoid with axes of lengths a, b and c
 Code: X():cos(u)/cosh(v) Y():2*sin(u)/cosh(v) Z():3*tanh(v) [u]:0,3*pi/2 [v]:-0.49*pi,0.49*pi
You have to replace a,b and c. For example for a=1, b=2 and c=3 you get
 Code: X():cos(u)/cosh(v) Y():2*sin(u)/cosh(v) Z():3*tanh(v) [u]:0,3*pi/2 [v]:-0.49*pi,0.49*pi

Parametrization of a Moebius strip that has a circle as boundary
 Code: X():(-2*cos(2*v)*sin(u))/      (-2 + sqrt(2)*cos(u)*sin(v) + sqrt(2)*sin(u)*sin(2*v)) Y():(sqrt(2)*(cos(u)*sin(v) - sin(u)*sin(2*v)))/      (-2 + sqrt(2)*cos(u)*sin(v) + sqrt(2)*sin(u)*sin(2*v)) Z():(-2*cos(u)*cos(v))/      (-2 + sqrt(2)*cos(u)*sin(v) + sqrt(2)*sin(u)*sin(2*v)) [u]:0,pi [v]:0,pi

Moebius strip's standard parametrization
 Code: X():(cos(u) + v*cos(u/2)*cos(u)) Y():(sin(u) + v*cos(u/2)*sin(u)) Z():v*sin(u/2) [u]:0,2*pi [v]:-0.3,0.3

 Code: X():u Y():v Z():u^3 - 3*u*v^2 [u]:-1.1,1.1 [v]:-1.1,1.1

Polar parametrization of a monkey saddle with n - 2 tails.
 Code: X():u*cos(v) Y():u*sin(v) Z():u^n*cos(n*v) [u]:0,  1 [v]:0,  2*pi
You have to replace n. For example, for n=3 you get.
 Code: X():u*cos(v) Y():u*sin(v) Z():u^3*cos(3*v) [u]:0,  1 [v]:0,  2*pi

Cyclide of Dupin of radius k whose focal sets are the parabolas u->{u,0,-u^2/(8*a) + a} and v->{0,v,v^2/(8*a) - a}
 Code: X():u*(8*a^2 + k + v^2)/(16*a^2 + u^2 + v^2) Y():v*(8*a^2 - k + u^2)/(16*a^2 + u^2 + v^2) Z():(16*a^2*(k - u^2 + v^2) - k*(u^2 + v^2))/(8*a*(16*a^2 + u^2 + v^2)) [u]:-40,40 [v]:-40,40
You have to replace a and k. For example for a=2 and k=1 you get
 Code: X():u*(33 + v^2)/(64 + u^2 + v^2) Y():v*(31 + u^2)/(64 + u^2 + v^2) Z():(64*(1 - u^2 + v^2) - (u^2 + v^2))/(16*(64 + u^2 + v^2)) [u]:-40,40 [v]:-40,40

Elliptic or hyperbolic paraboloid
 Code: X():u Y():v Z():a*u^2 + b*v^2+c*u*v [u]:-1,1 [v]:-1,1
You have to replace a, b and c. For example for a=b=1 and c=0 you get
 Code: X():u Y():v Z():u^2 + v^2 [u]:-1,1 [v]:-1,1

Polar parametrization of a generalized paraboloid
 Code: X():a*u*cos(v) Y():b*u*sin(v) Z():b*u^n [u]:0,1 [v]:0,2*pi
You have to replace n, a and b. For example for n=2, a=2 and b=1 you get
 Code: X():2*u*cos(v) Y():u*sin(v) Z():u^2 [u]:0,1 [v]:0,2*pi

Monkey saddle perturbed by a circular paraboloid
 Code: X():u Y():v Z():u^3 - 3*u*v^2 + a*(u^2 + v^2) [u]:-1,1 [v]:-1,1
You have to replace a. For example for a=-1 you get
 Code: X():u Y():v Z():u^3 - 3*u*v^2 - (u^2 + v^2) [u]:-1,1 [v]:-1,1

Polar parametrization of a monkey saddle of order n perturbed by a circular paraboloid.
 Code: X():u*cos(v) Y():u*sin(v) Z():u^n*cos(n*v) + a*u^2 [u]:0,1 [v]:0,2*pi
You have to replace n and a. For example for n=3 and a=-1 you get
 Code: X():u*cos(v) Y():u*sin(v) Z():u^3*cos(3*v) - u^2 [u]:0,1 [v]:0,2*pi

A plane
 Code: X():a1*u + a2*v Y():b1*u + b2*v Z():c1*u + c2*v [u]:-pi,pi [v]:-pi,pi
You have to replace a1, b1, c1, a2, b2 and c2. For example
 Code: X():u+v Y():u-v Z():2*u-3*v [u]:-pi,pi [v]:-pi,pi

Generalization of the monkey saddle and Plucker's surface
 Code: X():u Y():v Z():(u+v)^(m/2)*sin(4*atan(v/u)) [u]:-1,1 [v]:-1,1
You have to replace m and n. For example for m=2 and n=4 you get
 Code: X():u Y():v Z():(u+v)*sin(4*atan(v/u)) [u]:-1,1 [v]:-1,1

Plucker's surface with n folds
 Code: X():u Y():v Z():sin(n*atan(v/u)) [u]:-1,1 [v]:-1,1
You have to replace n. For example, for n=6 you get
 Code: X():u Y():v Z():sin(6*atan(v/u)) [u]:-1,1 [v]:-1,1

Plucker's surface
 Code: X():u Y():v Z():2*u*v/(u^2 + v^2) [u]:-1,1 [v]:-1,1

Generalization of the polar parametrizations of the monkey saddle and Plucker's surface.
 Code: X():u*cos(v) Y():u*sin(v) Z():u^m*sin(n*v) [u]:0,1 [v]:-pi,pi
You have to replace m and n. For example for m=2 and n=3 you get
 Code: X():u*cos(v) Y():u*sin(v) Z():u^2*sin(3*v) [u]:0,1 [v]:-pi,pi

Polar parametrization of Plucker's surface with n folds
 Code: X():u*cos(v) Y():u*sin(v) Z():sin(n*v) [u]:0,1 [v]:-pi,pi
You have to replace n. For example for n=5 you get
 Code: X():u*cos(v) Y():u*sin(v) Z():sin(5*v) [u]:0,1 [v]:-pi,pi

Elliptical "pseudosphere"
 Code: X():a*cos(u)*sin(v) Y():b*sin(u)*sin(v) Z():c*(cos(v) + log(tan(v/2))) [u]:0,2*pi [v]:0.001,pi-0.001
You have to replace a, b and c. For example for a=1, b=2 and c=3 you get
 Code: X():cos(u)*sin(v) Y():2*sin(u)*sin(v) Z():3*(cos(v) + log(tan(v/2))) [u]:0,2*pi [v]:0.001,pi-0.001

Right conoid
 Code: X():v*cos(u) Y():v*sin(u) Z():2*sin(u) [u]:-pi,pi [v]:-2,2

Shoe resembles the instep of a shoe.
 Code: X():u Y():v Z():a*u^3+b*v^2 [u]:-1.5,1.5 [v]:-1.5,1.5
You have to replace a and b. For example for a=1 and b=-1 you get
 Code: X():u Y():v Z():u^3-v^2 [u]:-1.5,1.5 [v]:-1.5,1.5

Sievert's surface of constant positive curvature a^2.
 Code: X():(2/(a + 1 - a*sin(v)^2*cos(u)^2))*(sqrt((a + 1)*(1 + a*sin(u)^2))*sin(v)/sqrt(a))*cos(-u/sqrt(a + 1) + atan(sqrt(a + 1)*tan(u))) Y():(2/(a + 1 - a*sin(v)^2*cos(u)^2))*(sqrt((a + 1)*(1 + a*sin(u)^2))*sin(v)/sqrt(a))*sin(-u/sqrt(a + 1) + atan(sqrt(a + 1)*tan(u))) Z():log(tan(v/2))/sqrt(a) + 2*(a + 1)*cos(v)/((a + 1 - a*sin(v)^2*cos(u)^2)*sqrt(a)) [u]:-pi/2,pi/2 [v]:0.1,pi-0.1
You have to replace a. For example for a=1 you get
 Code: X():(2/(2 - sin(v)^2*cos(u)^2))*(sqrt(2*(1 + sin(u)^2))*sin(v))*cos(-u/sqrt(2) + atan(sqrt(2)*tan(u))) Y():(2/(2 - sin(v)^2*cos(u)^2))*(sqrt(2*(1 + sin(u)^2))*sin(v))*sin(-u/sqrt(2) + atan(sqrt(2)*tan(u))) Z():log(tan(v/2)) + 4*cos(v)/((2 - sin(v)^2*cos(u)^2)) [u]:-pi/2,pi/2 [v]:0.1,pi-0.1

Stereographic parametrization of an ellipsoid with axes of lengths a, b and c
 Code: X():2*a*u/(u^2 + v^2 + 1) Y():2*b*v/(u^2 + v^2 + 1) Z():c*(u^2 + v^2 - 1)/(u^2 + v^2 + 1) [u]:-2.8,2.8 [v]:-2.8,2.8
You have to replace a, b and c. For example for a=5, b=3 and c=1 you get
 Code: X():10*u/(u^2 + v^2 + 1) Y():6*v/(u^2 + v^2 + 1) Z():(u^2 + v^2 - 1)/(u^2 + v^2 + 1) [u]:-2.8,2.8 [v]:-2.8,2.8

Stereographic parametrization of a sphere
 Code: X():2*u/(u^2 + v^2 + 1) Y():2*v/(u^2 + v^2 + 1) Z():(u^2 + v^2 - 1)/(u^2 + v^2 + 1) [u]:-2.8,2.8 [v]:-2.8,2.8

Polar stereographic parametrization of a sphere
 Code: X():2*exp(b*v)*u*cos(v)/(1 + exp(2*b*v)*u^2) Y():2*exp(b*v)*u*sin(v)/(1 + exp(2*b*v)*u^2) Z():(-1 + exp(2*b*v)*u^2)/(1 + exp(2*b*v)*u^2) [u]:0,3 [v]:0,2*pi
You have to replace b. For example for b=0.05 you get
 Code: X():2*exp(0.05*v)*u*cos(v)/(1 + exp(0.1*v)*u^2) Y():2*exp(0.05*v)*u*sin(v)/(1 + exp(0.1*v)*u^2) Z():(-1 + exp(0.1*v)*u^2)/(1 + exp(0.1*v)*u^2) [u]:0,3 [v]:0,2*pi

Swallow tail shaped surface
 Code: X():3*v^4 + u*v^2 Y():-4*v^3 - 2*u*v Z():u [u]:-3,2 [v]:-0.8,0.8

Tetrahedral surface
 Code: X():A*(u - a)^m*(v - a)^n Y():B*(u - b)^m*(v - b)^n Z():C*(u - c)^m*(v - c)^n [u]:0,1 [v]:0,1
You have to replace A, a, B, b, C and c. For example
 Code: X():(u-1)*(v-1)^2 Y():2*(u-1/2)*(v-1/2)^2 Z():1/3*(u-3)*(v-3)^2 [u]:0,1 [v]:0,1

Generalized helicoid of zero Gaussian curvature of slant sl
 Code: X():v*cos(u) Y():v*sin(u) Z():sl*u+asin(c/(v*a))*c+sqrt(v^2*a^2-c^2) [u]:0,7*pi/2 [v]:1,5
You have to replace a, c and sl. For example, for a=c=sl=1 you get[code:1:89cab81d3d]X():v*cos(u)
Y():v*sin(u)
Z():u+asin(1/v)+sqrt(v^2-1)
[u]:0,7*pi/2
abdelhamid belaid

Joined: 13 Aug 2009
Posts: 170

 Posted: Wed Feb 01, 2012 4:27 pm    Post subject: Very nice works, thank you much Jolkap _________________My YouTube channel
nextstep

Joined: 06 Jan 2007
Posts: 539

 Posted: Sun Feb 05, 2012 11:39 pm    Post subject: Hi, Great list indeed... Thank you for sharing _________________Cheers, Abderrahman
 Display posts from previous: All Posts1 Day7 Days2 Weeks1 Month3 Months6 Months1 Year Oldest FirstNewest First
 All times are GMT Page 1 of 1

 Jump to: Select a forum MathMod----------------MathMod Progress & featuresMathematical Models CollectionHow toBugsMathMod for WindowsMathMod for Linux/UnixMathMod For MACOSXMathMod TutorialsOther Mathematical ToolsOpen Discussion K3DSurf----------------K3DSurf Discuss/DiscussionsHow toK3DSurf math related questionsK3DSurf for WindowsK3DSurf for MacOSK3DSurf for LinuxOnline K3DSurf: J3DSurfNewsBugsOnline DocumentationAccount Activation Issue ?/ Problème d'activation de votre compte ?
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum